DARK MATTER and COSMIC RAYS

Paolo Lipari 4th school on Cosmic Rays and Astrophysics UAFBC Sao Paulo, 30th august 2010

Mysteries of the DARK UNIVERSE

DARK MATTER:

Holds together galaxies and other large scale structures [A new elementary particle ?]

DARK ENERGY :

Drives apart galaxies And other large scale structures [The energy of vacuum itself ?]

Dark Energy 73% (Cosmological Constant)

1920 "Great debate" Shapley-Curtis Nature of the Nebulae

Island Universes ? (Immanuel Kant)

The mistery Of the Nebulae

The Messier Catalogue (1774)

M1: The CRAB Nebula

Fig. 438.

M31: ANDROMEDA

Discovery of the Expansion of the Universe.

Velocity of Galaxies.

© Copyright California Institute of Technology. All rights reserved. Commercial use or modification of this material is prohibited.

COMA Galaxy Cluster

Optical

Fritz Zwicky 1933 First argument for Dark Matter X-ray [hot gas confined by deep gravitational well]

VIRGO CLUSTER

Bullet CLUSTER (2 colliding clusters)

MASS DISTRIBUTION (from gravitational lensing)

X-RAY Emission (gas of ordinary matter)

SHOCK FRONT

BULLET-SHAPED HOT GAS

DARK MATTER exists ! [and is NOT one of the known constituents of the Standard Model]

Expansion and Redshift

ENERGY evolution

1

$$p \simeq \frac{1}{\lambda} \quad \begin{array}{l} \mbox{Momentum associated} \\ \mbox{to wavelength like in Quantum Mechanics/} \\ E_{\rm now} = \frac{E_{\rm emission}}{1 + z_{\rm emission}} \quad \begin{array}{l} \mbox{For relativistic} \\ \mbox{Particles (E = p)} \end{array}$$

$$E(t) = E_{\rm emission} \quad \frac{1 + z(t)}{1 + z(t_{\rm emission})}$$

Energy evolution with time.

Dynamics of the expansion:

Friedmann's equation.

[obtained from Einstein equations Of General Relativity]

Constant K Geometry of Space

 $K = \frac{c^2}{R_0^2}$

R_0 : Curvature radius of space

Derivation from elementary Newtonian dynamics [wrong motivation, but right answer]:

Spherical symmetry: Choose an arbitrary center point. Definition of energy = Kinetic + Potential

$$\frac{1}{2}m \left(\frac{dr}{dt}\right)^2 - \frac{GM(r)m}{r} = E$$

$$M(r) = \frac{4\pi}{3} \rho(t) r^3$$
$$r = R_0 a(t)$$
$$K = \frac{2E}{mR_0^2}$$

The Hubble "constant" [constant in space not in time]

$$H(t) = \frac{\dot{a}(t)}{a(t)}$$

$$H_0 \equiv H(t_0) = \dot{a}(t_0)$$

$$H_0 \simeq 70 \ \frac{\mathrm{Km/s}}{\mathrm{Mpc}}$$

$$H_0 \simeq [14.0 \text{ Gyr}]^{-1}$$

Substitute: $t = t_0$

$$H_0^2 = \frac{8\,\pi\,G\,\,\rho_0}{3} - K$$

$$\begin{split} 1 &= \frac{8 \pi G \rho_0}{3 H_0^2} - \frac{c^2}{R_0^2 H_0^2} \\ 1 &= \frac{\rho_0}{\rho_c} - \frac{c^2}{R_0^2 H_0^2} \\ 1 &= \Omega_0 + \Omega_k \end{split} \qquad \begin{array}{l} \Omega_k &= -\frac{c^2}{R_0^2 H_0^2} \\ \text{Curvature term} \end{array}$$

Geometry defined by Ω_0

 $\Omega_0 = \frac{\rho_0}{\rho_c}$

MAP990006

Solutions of Friedmann's equation

Need one additional equation "equation of state" For the evolution of rho(t). Average energy density of the universe at present:

$$E = \sqrt{p^2 + m^2}$$

$\rho_0 = \rho_{\text{matter}} + \rho_{\text{radiation}} + \rho_{\text{vacuum}}$ $E \simeq m \qquad E \simeq p$

Average energy density of the universe at present:

$$E = \sqrt{p^2 + m^2}$$

$$\rho_0 = \rho_{\text{matter}} + \rho_{\text{radiation}} + \rho_{\text{vacuum}}$$

$$E \simeq m \qquad \qquad E \simeq p$$

Energy associated to the vacuum.

Equivalent to the introduction of a "cosmological constant"

$$\Lambda = 8\pi \ G \ \rho_{\rm vacuum}$$

$$\rho_0 = \rho_{\text{matter}} + \rho_{\text{radiation}} + \rho_{\text{vacuum}}$$

Particle conservation Particle conservation + momentum redshift

.... the vacuum is the vacuum...

$$\rho_0 = \rho_{\text{matter}} + \rho_{\text{radiation}} + \rho_{\text{vacuum}}$$

Particle conservation Particle Conservation + momentum redshift

.... the vacuum Is the vacuum...

$$ho(z) =
ho_{
m matter} (1+z)^3 +
ho_{
m radiation} (1+z)^4 +
ho_{
m vacuum}$$

 $\rho(t) = \frac{\rho_0}{a^4(t)}$

Radiation Dominated

$$\rho(t) = \frac{\rho_0}{a^3(t)}$$

Matter Dominated

$$\rho(t) = \rho_0$$

Vacuum Dominated

 $\frac{da(t)}{dt} = \sqrt{\frac{8\pi \, G \, \rho_0}{3}} \, \frac{1}{a(t)}$ $a(t) \propto t^{1/2}$ $\frac{da(t)}{dt} = \sqrt{\frac{8\pi \, G \, \rho_0}{3}} \, \frac{1}{\sqrt{a(t)}}$ $a(t) \propto t^{2/3}$ $\frac{da(t)}{dt} = \sqrt{\frac{8\pi \, G \, \rho_0}{3}} \, a(t)$ $a(t) = e^{Ht}$

ACCELERATED EXPANSION !! Vacuum positive energy = Repulsion

$$\frac{da(t)}{dt} = \sqrt{\frac{8\pi G \rho_0}{3}} a(t) \qquad a(t) = e^{Ht}$$

Acceleration of the scale a(t) from Einstein equations

$$\ddot{a}(t) = -\frac{4\pi G}{3} \left[\rho(t) + 3 p(t)\right] a(t)$$

Acceleration involves Density + pressure of the content of the universe.

$$\frac{1}{H_0^2} \left[\frac{da(t)}{dt} \right]^2 = a^2(t) \left[\frac{\Omega_{\rm m}}{a^3(t)} + \frac{\Omega_{\rm r}}{a^4(t)} + \Omega_{\Lambda} + \frac{\Omega_k}{a^2(t)} \right]$$
$$1 = \Omega_{\rm mat} + \Omega_{\rm rad} + \Omega_{\Lambda} + \Omega_k$$

Friedmann's equation

t *H*₀

t *H*₀

t *H*₀

Determination of the density and "equation of state" of the Universe.

- 1. SN1a luminosity reshift relation
- 2. Cosmic Microwave Backround Radiation Anisotropies
- 3. Galaxy Distributions

Flat Universe from CMBR Angular Fluctuations

Triangulation with acoustic peak

Large Scale Galaxy distributions

...but we do NOT know much more...

It exists (no modified gravity for the bullet cluster!)

Good estimate of the cosmological average (22%)

Most of it is non baryonic

Most of it is "cold"

It cannot be explained by the Standard Model in Particle Physics !!

What is the Dark Matter ?

Cold Dark Matter (Tate Gallery. London)

Artists And Dark Matter

Cornelia Parker

What is the Dark Matter ?

Possible theoretical ideas

Thermal Relic

Axion

Super-massive particles

What is the Dark Matter ?

Possible theoretical ideas

Thermal Relic

Axion

Super-massive particles

Discuss only this idea [perhaps the best motivated] [Offers the best chances of discovery]

Early Universe was HOT

[Adiabatic Compression Of a fluid]

"COSMIC SOUP"

$$a + b \leftrightarrow c + d$$

Frequent reactions Between all particles Present in the "soup"

$$\gamma + \gamma \leftrightarrow e^+ + e^-$$
$$e^+ + e^- \leftrightarrow q_j + \overline{q}_j$$

$$a + b \leftrightarrow c + d$$

$$\gamma + \gamma \leftrightarrow e^{+} + e^{-}$$

$$e^{+} + e^{-} \leftrightarrow q_{j} + \overline{q}_{j} \quad \text{New particle } \chi$$

$$e^{+} + e^{-} \leftrightarrow \chi + \overline{\chi}$$

$$THERMAL$$
EQUILIBRIUM
$$\gamma + \gamma \leftrightarrow \chi + \overline{\chi}$$

$$(\overline{\chi} = \overline{\chi})$$

$n_j = n_{\overline{j}}$	Thermal equilibrium Distribution	
dN_j	$_$ $_g_j$	1
$d^3x d^3p$	$\frac{1}{(2\pi \hbar c)^3}$	$e^{E/T} \mp 1$
		Boson fermion
$n_j \neq n_{\overline{j}}$		
dN_j	$_g_j$	1
$d^3x d^3p$	$(2 \pi \hbar c)^3$	$\overline{e^{(E-\mu_j)/T} \mp 1}$

$$n(T) = \int d^3p \ \frac{dN}{d^3x \ d^3p}$$
$$\rho(T) = \int d^3p \ E(p) \ \frac{dN}{d^3x \ d^3p}$$

High Temperature

 $T \gg m_{\chi}$

 $n_{\text{boson}}(T) = g \, \frac{\zeta(3)}{\pi^2} \, T^3$ $n_{\text{fermion}}(T) = g \ \frac{\zeta(3)}{\pi^2} T^3 \times \frac{3}{4}$ $\rho_{\rm boson}(T) = g \, \frac{\pi^2}{30} \, T^4$ $\rho_{\text{fermion}}(T) = g \ \frac{\pi^2}{30} T^4 \times \frac{7}{8}$

Particle anti-particle annihilation and the "Relic Density"

[Pedagogical discussion] "box" of constant volume. Equal distributions for particle and anti-particle

$$dP_{\text{distruction}} = n_{\chi} \langle \sigma_{\chi\chi \to \text{anything}} v \rangle dt$$

Probability of disappearance per unit time

$$\langle \sigma v \rangle = \int d^3 v_1 \int d^3 v_2 f_{\chi}(\vec{v}_1) f_{\chi}(\vec{v}_2) \sigma(|\vec{v}_1 - \vec{v}_2|) |\vec{v}_1 - \vec{v}_2|$$

Velocity averaged cross section [in many cases $\sigma(v) v = \text{constant}$]

Particle anti-particle annihilation and the "Relic Density"

[Pedagogical discussion] "box" of constant volume. Equal distributions for particle and anti-particle

$$dP_{\text{distruction}} = n_{\chi} \langle \sigma_{\chi\chi \to \text{anything}} v \rangle dt$$

Probability of disappearance per unit time

$$\langle \sigma v \rangle = \int d^3 v_1 \int d^3 v_2 f_{\chi}(\vec{v}_1) f_{\chi}(\vec{v}_2) \sigma(|\vec{v}_1 - \vec{v}_2|) |\vec{v}_1 - \vec{v}_2|$$

Velocity averaged cross section [in many cases $\sigma(v) v = \text{constant}$]

$$dn_{\chi} = -n_{\chi} dP_{\text{dist}} = -n_{\chi}^2 \langle \sigma v \rangle dt$$

Evolution of the Particle density

$$n(t) = \frac{n_i}{1 + n_i \langle \sigma v \rangle (t - t_i)} \quad \text{Solution}$$

All particles annihilate.

$$\lim_{t \to \infty} n(t) = 0$$

Annihilation in an Expanding Universe

$$\frac{d[n(t) \, a^3(t)]}{dt} = -n^2(t) \, a^3(t) \, \langle \sigma \, v \rangle \quad \begin{array}{l} \text{Evolution equation} \\ \text{For the comoving} \\ \text{density} \end{array}$$

$$n(t) a^{3}(t) = \frac{n_{i} a_{i}^{3}}{1 + n_{i} a_{i}^{3} \langle \sigma v \rangle \int_{t_{i}}^{t} dt \ [a(t)]^{-3}}$$
Solution

$$(t-t_i) \rightarrow a^3(t_i) \int_{t_i}^t \frac{dt}{a(t)^3}$$

Difference with Respect to the case Of constant volume

$$\frac{d[n(t) \, a^3(t)]}{dt} = -n^2(t) \, a^3(t) \, \langle \sigma \, v \rangle \quad \begin{array}{l} \text{Evolution equation} \\ \text{For the comoving} \\ \text{density} \end{array}$$

$$n(t) a^{3}(t) = \frac{n_{i} a_{i}^{3}}{1 + n_{i} a_{i}^{3} \langle \sigma v \rangle \int_{t_{i}}^{t} dt \ [a(t)]^{-3}}$$
Solution

$$(t - t_i) \rightarrow a^3(t_i) \left(\int_{t_i}^t \frac{dt}{a(t)^3} \right)$$

Difference with Respect to the case Of constant volume

Possible convergent integral For $t \rightarrow \infty$ Finite relic density

 $T(t) \propto \frac{1}{a(t)}$

 $a(t) \propto t^{1/2}$ $T(t) \propto t^{-1/2}$

$$dt \propto \frac{dT}{T^3}$$

$$\int_{t_i(m)}^{\infty} \frac{dt}{a(t)}^3 \propto \int_m^0 \frac{dT}{T^3} T^3 = \int_0^m dT = m$$

$$n(t) a^{3}(t) = \frac{n_{i} a_{i}^{3}}{1 + n_{i} a_{i}^{3} \langle \sigma v \rangle \int_{t_{i}}^{t} dt \ [a(t)]^{-3}}$$

$$\lim_{t \to \infty} [n(t) a^3(t)] \simeq n(t_0) a(t_0)^3 = n(t_0) \propto \frac{1}{m \langle \sigma v \rangle}$$

$$n_j(t_0) \propto rac{1}{\langle \sigma v \rangle \ m_j}$$

$$\rho_j(t_0) = m_j n_j(t_0) \propto \frac{1}{\langle \sigma v \rangle}$$

 $\Omega_j^0 \propto \frac{1}{\langle \sigma \, v \rangle}$

$$\Omega_j^0 \simeq 0.3 \left[\frac{3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}}{\langle \sigma v \rangle} \right]$$

The "relic density" of a particle Is determined by its annihilation cross section

(several complications are possible)

$$\sigma(\chi\chi \to \text{anything}) \simeq 10^{-36} \text{ cm}^2$$
$$\sigma \simeq \frac{\alpha^2}{M^2} \ (\hbar c)^2$$

$$\Omega_j^0 \simeq 0.3 \left[\frac{3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}}{\langle \sigma v \rangle} \right]$$

The "relic density" of a particle Is determined by its annihilation cross section $\overset{\rm M}{{\rm M}}$

(several complications are possible)
Dark Matter in the form of WIMP's

Weakly Interacting Massive Particles

WIMP's "miracle"

PHYSICS beyond the STANDARD MODEL is **REQUIRED** to explain Dark Matter !!

Extension of the Standard Model are EXPECTED at the electroweak mass scale

These extensions can "naturally" result in the existence of Dark Matter !

PHYSICS beyond the STANDARD MODEL is **REQUIRED** to explain Dark Matter !!

Extension of the Standard Model are EXPECTED at the electroweak mass scale

These extensions can "naturally" result in the existence of Dark Matter !

LHC/Dark Matter connection !!

Problems with a different status: DM problem : direct observational puzzle. New physics at EW scale : theoretically motivated prediction

Are LHC/ILC and DARK Matter searches studying the same Physics ?

Are LHC/ILC and DARK Matter searches studying the same Physics ?

This is certainly possibles ! [... but not necessary ...]

The physics may or may not be related

Lines of investigations that are independent and complementary

Problems with a different status: DM problem : direct observational puzzle. New physics at EW scale : theoretically motivated prediction

Three roads to the study of the "WIMP" hypothesis:

- 1. Direct Detection
- Indirect Detection
 [Observation of annihilation products In our own Galaxy]
- 3. Discovery of a new stable particle In an accelerator [LHC]

Efficient production now

(Particle colliders)

Efficient scattering now (Direct detection)

Astrophysical information

Dark Matter in the Milky Way

 $\rho_{\rm dm}(\vec{x})$

Dark Matter density distribution

 $f_{\rm dm}(\vec{v},\vec{x})$

Velocity distribution

[consistency requirement]

Astrophysical information

Dark Matter in the Milky Way

$$ho_{\rm dm}(\vec{x})$$

Dark Matter density distribution

 $f_{\rm dm}(\vec{v}, \vec{x})$

Velocity distribution

[consistency requirement]

Problems:

"The CUSP"

"Granularity" ["the BOOST factor"]

Isothermal "NFW" (Navarro-Frenk-Wolf) "Moore"

(constant)
(1/r divergence)
(stronger divergence)

Shape of the "CUSP"

Numerical Simulations of Structure Formations

500 Mpc/h

Mon. Not. R. Astron. Soc. 391, 1685-1711 (2008)

doi:10.1111/j.1365-2966.20

The Aquarius Project: the subhaloes of galactic haloes

V. Springel,^{1*} J. Wang,¹ M. Vogelsberger,¹ A. Ludlow,² A. Jenkins,³ A. Helmi,⁴ J. F. Navarro,^{2,5} C. S. Frenk³ and S. D. M. White¹

Significant Structure in DM

"Boost factor"

Power injection for Dark Matter annihilation $L(\vec{x}) = \frac{\rho(\vec{x})^2}{M_{\gamma}^2} \langle \sigma v \rangle M_{\chi}$

 $\chi + \chi \to \gamma \quad e^+$ ν_{α} \overline{p}

Power injection from DM annihilation

Power injection from DM annihilation

$$L_{\rm Galaxy}^{\rm DM} \simeq 4 \times 10^{40} \ \frac{\rm erg}{\rm s} \quad \left[\frac{\langle \sigma \, v \rangle}{3 \times 10^{-26} \, {\rm cm}^3 \, {\rm s}^{-1}} \right] \quad \left[\frac{100 \ {\rm GeV}}{M_{\chi}} \right] \times {\rm Boost}$$

$$L(\vec{x}) = \frac{\rho(\vec{x})^2}{M_{\chi}^2} \langle \sigma v \rangle M_{\chi}$$

• $L_{\rm DM} \propto \frac{1}{M_{\chi}}$

$$\bigcirc \langle \rho(\vec{x})^2 \rangle \ge \langle \rho(\vec{x}) \rangle^2$$

"Granularity" boosts the power output.

• The "WIMP miracle" $v_{\text{freeze out}} \simeq 0.2 \div 0.3$ $\langle \sigma v \rangle \simeq 3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1} \quad v_{\text{Galaxy}} \simeq 10^{-3}$

First possibility: Sommerfeld effect

Different possibilities for extrapolating the cross section from the early Universe:

 a non-perturbative enhancement in the cross section at low velocities

Hisano, Matsumoto & Nojiri,(2003); e.g.: Cirelli et al., arXiv:0809.2409

DM is charged under a (new) gauge force, mediated by a "light" boson: this sets a non-perturbative long-range interaction, analogously to Coulomb interaction for positronium:

$$V(r) = -\frac{\alpha}{r}$$
 gives the enhancement $S = \frac{\alpha}{r}$ in the cross section:

$$S = \left| \frac{\psi(\infty)}{\psi(0)} \right|^2 = \frac{\pi \, \alpha / v}{1 - e^{-\pi \, \alpha / v}} \xrightarrow{v \,\ll\, \alpha} \frac{\pi \, \alpha}{v}$$

The same 1/v enhancement is obtained for a Yukawa potential. In a DM context, first studied in the MSSM for pure very massive Winos or Higgsinos and weak interaction as gauge force (light W boson lPiero Ullio

DM – Nuclei Elastic Scattering $\sigma(\chi + A \to \chi + A)$ $d\sigma$ $\frac{d\cos\theta^*}{d\cos\theta^*}\Big|_{(\chi+A\to\chi+A)}$

Direct detection Accretion in Sun, Stars....

[effect on Star formation near the galactic center]

Photon emission from DM annihilation

Photons from Dark Matter

$$\begin{split} \phi_{\gamma}(\Omega) &= K_{\gamma} J(\Omega) \left[\frac{dn}{dE}(E) \right|_{\chi\chi \to \gamma} \quad \text{Spectrum} \\ K_{\gamma} &= \frac{1}{4\pi} \left. \frac{\langle \sigma v \rangle}{2} \left. \frac{\langle \rho_{\odot} \rangle^{2}}{M_{\chi}^{2}} \right. R_{\oplus} \\ K_{\gamma} &\simeq 3.7 \times 10^{-10} \left[\frac{\langle \sigma v \rangle}{3 \times 10^{-6} \, \text{cm}^{3} \, \text{s}^{-1}} \right] \left[\frac{100 \text{ GeV}}{M_{\chi}} \right]^{2} \\ J(\Omega) &= \frac{1}{R_{\odot}} \int d\ell \; \frac{\rho^{2}(\ell, \Omega)}{\rho_{\odot}^{2}} \quad \text{Adimensional} \\ \text{Angular factor} \end{split}$$

$E_{\gamma} > 100 \text{ MeV}$

Angular dependence of the Photon flux

Angular dependence of the Photon flux

$$\frac{1}{4 \pi} \int d\Omega \ J(\Omega) \simeq 3.0$$
 (3.5, 1.8)

Fermi sensitivity: A = 9500 cm2

 $AT \simeq 0.45 \times 10^{11} \text{ cm}^2 \text{ s } N_{\text{years}}$

$$N_{\gamma}^{\rm NFW} \simeq 430 \; \left[\frac{\langle \sigma \, v \rangle}{3 \times 10^{-26} \, {\rm cm}^3 \, {\rm s}^{-1}} \right] \; \left[\frac{100 \; {\rm GeV}}{M_{\chi}} \right]^2 \; N_{\rm years}$$

Charged Particles:

Magnetic confinement Energy Loss

Total power radio continuum at $\lambda 90$ cm obtained from VLA observations with 70" resolution. Contours are at 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, and 3077 × 8 mJy/beam.

