
Johannes Knapp,Santo André, 2010

Air Shower SimulationsAir Shower Simulations
Johannes Knapp,
Physics & Astronomy
U of Leeds, UK

Part 1: Astroparticle Physics, Air Showers
and Simulations

Part 2: Hadronic & Nuclear Models

Part 3: CORSIKA Performance and Limitations

4th School on
Cosmic Rays and Astrophysics

Santo André, Brazil
2010



Johannes Knapp,Santo André, 2010

Air Shower SimulationsAir Shower Simulations
Johannes Knapp,
Physics & Astronomy
U of Leeds, UK

Part 1: Astroparticle Physics, Air Showers
and Simulations

Part 2: Hadronic & Nuclear Models

Part 3: CORSIKA Performance and Limitations

4th School on
Cosmic Rays and Astrophysics

Santo André, Brazil
2010



Johannes Knapp,Santo André, 2010

pre 1989

SH2C-60-K-OSL-E-SPEC (Grieder):
main structure,
isobar model for hadronic interactions

HDPM & NKG (Capdevielle):
high-energy hadronic interactions,
analytic treatment of el.mag.-subshowers

EGS4 (Nelson et al.):
electron gamma showers

CORSIKA Vers. 1.0 7 Feb 1990

Archeology of CORSIKA



Johannes Knapp,Santo André, 2010

First official reference:
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22th ICRC, Adelaide, Jan 1990
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Analyzing experimental data on Extensive Air Showers (EAS) or planning corresponding experiments requires
a detailed theoretical modeling of the cascade which develops when a high energy primary particle enters the
atmosphere. This can only be achieved by detailed Monte Carlo calculations taking into account all
knowledge of high energy strong and electromagnetic interactions. Therefore, a number of computer
programs has been written to simulate the development of EAS in the atmosphere and a considerable
number of publications exists discussing the results of such calculations.

A common feature of all these publications is that it is difficult, if not impossible, to ascertain in detail which
assumptions have been made in the programs for the interaction models, which approximations have been
employed to reduce computer time, how experimental data have been converted into the unmeasured
quantities required in the calculations (such as nucleus-nucleus cross sections, e.g.) etc.

This is the more embarrassing, since our knowledge of high energy interactions - though much better today
than ten years ago - is still incomplete in important features. This makes results from different groups difficult
to compare, to say the least. In addition, the relevant programs are of a considerable size which - as
experience shows - makes programming errors almost unavoidable, in spite of all undoubted efforts of the
authors.

We therefore feel that further progress in the field of EAS simulation will only be achieved, if the groups
engaged in this work make their programs available to (and, hence, checkable by) other colleagues. This
procedure has been adopted in high energy physics and has proved to be very successful.
It is in the spirit of these remarks that we describe in this report the physics underlying the CORSIKA program
developed during the last years by a combined Bern-Bordeaux-Karlsruhe effort.

We also plan to publish a listing of the program as soon as some more checks of computational and
programming details have been performed. We invite all colleagues interested in EAS simulation to propose
improvements, point out errors or bring forward reservations concerning assumptions or approximations
which we have made. We feel that this is a necessary next step to improve our understanding of EAS.

Preface to KfK 4998 (1992)
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Use the same yardstick (i.e. Monte Carlo program)
to get consistent results in different experiments.

Use a well-calibrated, reliable yardstick
to get correct results.

ICRC Durban 1997: the Fly’s Eye - AGASA
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KfK 4998 + FZKA 6019 > 870 citations !
by far the most cited work of its authors
( ... and more citations than all KASCADE papers together. ≈750)

CORSIKA : the world-wide standard
(700 users, from 50 countries and 50 experiments)
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Performance
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Shower development (qualitatively)Shower development (qualitatively)

crucial:
- inelastic cross-sections (sinel)
- hadronic particle production

(inelasticity kinel i.e. fraction of energy converted into secondaries)

large cross-sections,
high inelasticity

small cross-sections,
low inelasticity

less crucial:
nuclear fragmentation, dE/dx, decays, tracking,
electromagnetic reactions, ....

correlated!

}
}

make short showers

make long showers
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Predicted p-p Cross-Sections
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p-Air Inelastic Cross-Sections 2008

~20%
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HERA measured structure functions at small xHERA measured structure functions at small x

The more partons (quarks & gluons)

there are in a nucleon
at small x,

the more likely a collision is to
happen with a
high-energy projectile,

and the higher is the
interaction cross-section.

HERA data help with
extrapolation of
cross-sections
to high energies.

x = momentum fraction of a parton
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Coverage in x - Q2 plane
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Conversion from p-p to p-Air cross sections (Glauber Theory)Conversion from p-p to p-Air cross sections (Glauber Theory)
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3 groups applied Glauber theory to deduce
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the measured p-p cross-sections (SppS, Tevatron)

origin of difference? what exactly is the nucleon distribution of a nucleus?

15% difference
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Cross-sections on
Proton and Air
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Results on particle productionResults on particle production

particle multiplicity
in p-p collisions
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E = 1015 eV

E = 1019 eV

Huge difference,
but does it matter ?

QGSJet produces
much more secondaries
than other models.

QGSJet produces
much more secondaries
than other models.
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Rapidity:

y = ln

Pseudorapidity:

η = ln

η = - ln (tan(θ/2))

η ~ y
for high energies
(or zero mass)

(Pseudo)rapidity
is additive in Lorentz
transformation.
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UA5 results at the SPPS

Pseudorapidity (η) distributions initially not very well described:
models can fit either dN/dη(η=0) or
the tail to large η-values,
but not both.

are models wrong or badly tuned?

UA5 results at the SPPS

are models wrong or badly tuned?
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Experimental results are not always to be taken at face value.

Another experiment at the same collider ....Another experiment at the same collider ....
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Simulations including experimental trigger

New experimental results in contradiction to older UA5 distributions,
but very good agreement with simulations.

Experimental results are not always to be taken at face value.
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Particle production in forward directionParticle production in forward direction

... important since forward particles carry energy
efficiently down the atmosphere
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unphysical
since too simple
nucleus-nucleus
model

most probable:
one projectile nucleon
hits one target nucleon
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very forward region
is important for
shower development

big difference in total
number of particles
(not very important)
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Feynman x distribution in N-N collisions ...
... should be symmetric as well

Feynman x distribution in N-N collisions ...
... should be symmetric as well
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Nitrogen-Nitrogen CollisionsNitrogen-Nitrogen Collisions

... should be perfectly symmetric,
if nuclear interactions are treated well.

very bad !
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difference in Xmax,
but large fluctuations

differences between
hadrons and photons are large

differences between
proton and iron (or nuclei)
are subtle

On average Fe have:
higher 1st interaction, since σint larger,
more secondaries, since N

sec
~ ln(E),

more µ, less e,γ at ground,
smaller fluctuations,

since superposition of 56 subshowers
faster signal rise, since µs faster

than p showers.
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at lower energies:
large fluctuations
“strange” shower curves because of
fluctuations in height and type of
first few interactions.
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Average Longitudinal Shower DevelopmentAverage Longitudinal Shower Development
QGSJet well in line with other models.
High multiplicity
partly compensated by

lower cross-section and
partly irrelevant since mostly

low-energy particles produced.
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The 3 x 1020 eV Fly’s Eye EventThe 3 x 1020 eV Fly’s Eye Event ... is it a photon shower ?
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The 3 x 1020 eV Fly’s Eye EventThe 3 x 1020 eV Fly’s Eye Event ... is it a photon shower ?



Johannes Knapp,Santo André, 2010

Simulations vs Data:
... a few examples

Result:
fair agreement from 1012 - 1020 eV
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VERITAS
Telescope 1

E > 150 GeV

gamma rays:
good agreement
of image param.
distributions

CR background:
absolute trigger
rate within 15%



Johannes Knapp,Santo André, 2010

mean Ch. angle Xmax

direct Ch. lightcore distance

HESS: 10-100 TeV mix of hadronic primaries
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Xmax versus energy : comparison with model suggested
composition change from Fe to p

Data versus SimulationsData versus Simulations

absolute prediction
after shift of 25 g/cm2
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Xmax versus energy

Now : generally in
good agreement
(absolute prediction)
over 6 orders of mag.

Data versus SimulationsData versus Simulations

Model dependence of composition persists, though at much lower level.
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Data versus SimulationsData versus Simulations MCs for mixed hadronic comp.
are consistent with data.
γ, ν showers look very different.
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Data versus Simulations

CORSIKA Simulations
KASCADE : 1015 - 1016 eV
muon - electron ratio
KASCADE : 1015 - 1016 eV
muon - electron ratio

0 . 6 5 0 . 7 0 . 7 5 0 . 8 0 . 8 5 0 . 9 0 . 9 5

CORSIKA Simulations

Data versus Simulations ... another example
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Kascade:
fair agreement
of Monte Carlo
with exp. data
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data
Protons

data
Iron

data

Fit (29% p, 71% Fe)

data
Fit (30% p, 70% Fe)

Haverah Park data (re-analysed 2003)

0.2 EeV < E < 0.6 EeV
292 events

0.6 EeV < E < 1 EeV
46 events

Haverah Park data (re-analysed 2003)

Models can
describe data
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Iron Protons

state of the art 1978
(simulations)

State-of-the-art model 1978State-of-the-art model 1978

Models could not explain experimental data at all !
How to interpret the data? (mass >> Fe ???)
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Inclined showers (Q > 60o) are differentInclined showers (Q > 60o) are different

B

C

10-A

S(r) = E . 10 x = lg(r/1000 m)
(A+Bx+Cx2)

E = 1 ... 100 EeV

e/γ domain µ domain < 60o:
el.mag. dominate
> 60o:
muons dominate

Models tell
us how to
reconstruct
air showers.

P. Billoir
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Primary γ's, e.g. from decays of topological defects ??Primary γ's, e.g. from decays of topological defects ??
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Ave et al., PRL 85 (2000) 2244

49 Events > 1019 eV

60o < θ < 80o

thick atmosphere:
only muons arrive at ground
long path through atmosphere

with influence of mag. field.

γ/p< 40%
Fe/p< 54%

(95% confidence level)

This analysis could only be made since models do describe (roughly)
the experimental data.
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Auger DataAuger Data

log10 (E/EeV) from FD

log10 (S1000)
from SD
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Muons in MACRO detectorMuons in MACRO detector

PhD thesis Marco Sioli, Bologna 1999
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CORSIKA / QGSJet describes experimental data rather well.

Muon bundles in MACRO detectorMuon bundles in MACRO detector

PhD thesis Marco Sioli, Bologna 1999

CORSIKA / QGSJet describes experimental data rather well.
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L3+C Vertical Muon Spectrum & Charge Ratio (cosθ > 0.98)L3+C Vertical Muon Spectrum & Charge Ratio (cosθ > 0.98)

statistical errors only
* hep-ph/0102042

** hep-ph/0201310
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Summary & OutlookSummary & Outlook

Great improvements in EAS simulations in past few years.
Soft hadronic and nuclear interactions modeled on basis of
Gribov- Regge & Glauber Theory.
New models allow a safer extrapolation to highest energies.

Assumption of a mixed CR composition (p, He, .... Fe)
and extrapolation of models from 100 GeV range (e.g. QGSJET)
yields amazingly good agreement with CR data from ~1012 .... 1019 eV.

Many new accelerator experiments (will) provide new experimental input to
cross-sections, diffraction and hadronic particle production under small angles.

New astroparticle experiments will provide new constraints at higher energies
and data with improved quality (e.g. KASCADE-Grande, Auger, ICE Cube ......

AMS, direct C, ....)

Only HEP and Astroparticle physicists together can solve the problem of
origin of the high energy cosmic rays (the highest-energy particles in the universe)
and its hadronic interaction with the atmosphere.
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