

# The air shower experiments KASCADE and KASCADE-Grande

Jörg R. Hörandel Radboud University Nijmegen



http://particle.astro.kun.nl



# **Cosmic-Ray Energy Spectrum**



http://particle.astro.kun.nl

#### galactic cosmic rays

![](_page_2_Figure_1.jpeg)

![](_page_2_Figure_2.jpeg)

### Origin of galactic cosmic rays explored with complementary approaches

#### γ-ray astronomy

![](_page_3_Picture_2.jpeg)

sources acceleration

direct measurements above the atmosphere

![](_page_3_Picture_5.jpeg)

elemental/isotopic composition propagation in Galaxy

#### air shower measurements

![](_page_3_Picture_8.jpeg)

structures in E-spec. end of gal. comp. anisotropy acceleration., propag.

![](_page_3_Picture_10.jpeg)

# **Relative abundance of elements at Earth**

![](_page_4_Figure_1.jpeg)

→Cosmic rays are "regular matter", accelerated to extremely high energies

JRH, Adv. Space Res. 41 (2008) 442

![](_page_5_Figure_0.jpeg)

### **A Heitler Model – Electromagnetic Cascades**

![](_page_6_Figure_1.jpeg)

pair production  $\gamma \rightarrow e^++e^-$ 

bremsstrahlung e  $\rightarrow$  e+ $\gamma$ 

splitting length d=X<sub>0</sub> ln2

radiation length X<sub>0</sub>=36.7 g/cm<sup>2</sup>

after *n* splitting lengths: 
$$x = nX_0 \ln 2$$
 and  $N = 2^n = \exp\left(\frac{x}{X_0}\right)$   
energy per particle  $E = E_0/N$  critical energy  $E_c^e = 85 \text{ MeV}$ 

#### number of particles at shower maximum

$$N_{max} = 2^{n_c} = \frac{E_0}{E_c^e}$$

$$n_c = \frac{\ln\left(\frac{E_0}{E_c^e}\right)}{\ln 2}$$

J. Matthews, Astrop. Phys. 22 (2005) 387

JRH, Mod. Phys. Lett. A 22 (2007) 1533

 $\mathbf{i}$ 

1

### **A Heitler Model – Electromagnetic Cascades**

![](_page_7_Figure_1.jpeg)

### **A Heitler Model – Hadronic Cascades**

![](_page_8_Figure_1.jpeg)

hadronic interaction  $\pi + A \rightarrow \pi^0 + \pi^+ + \pi^-$ 

interaction length  $\lambda_{i}^{\pi\text{-air}} {\sim} 120 \text{ g/cm}^2$ 

π → hadronic interaction π → decay "critical energy" E<sub>c</sub>π~20 GeV

in each interaction 3/2N<sub>ch</sub> particles:

 $N_{ch} \, \pi^{+\text{-}} \, and \, \frac{1}{2} \, N_{ch} \, \pi^0 \qquad N_{ch} \sim 10$ 

after *n* interactions  $N_{\pi} = (N_{ch})^n$   $E_{\pi} = \frac{E_0}{\left(\frac{3}{2}N_{ch}\right)^n}$ 

after  $n_c$  interactions  $E_{\pi} = E_c^{\pi}$ :  $n_c = \frac{\ln E_0 / E_c^{\pi}}{\ln \frac{3}{2} N_{ch}} = 0.85 \lg \left(\frac{E_0}{E_c^{\pi}}\right)$ 

#### superposition model

particle  $(E_0, A) \rightarrow A$  proton showers with energy  $E_0/A$ J. Matthews, Astrop. Phys. 22 (2005) 387 JR

JRH, Mod. Phys. Lett. A 22 (2007) 1533

### A Heitler Model – $N_{\mu}$ and $N_{e}$

![](_page_9_Figure_1.jpeg)

### A Heitler Model – N<sub>u</sub> vs. N<sub>e</sub>

 $N_e$ - $N_{\mu}$  plane

N<sub>e</sub>-N<sub>u</sub> ratio

$$\begin{split} N_{\mu}|_{A=const} &\approx 0.18A^{0.14}N_{e}^{0.86} \\ N_{\mu}|_{E_{0}=const} &\approx 5.77 \cdot 10^{16} \left(\frac{E_{0}}{1 \text{ PeV}}\right)N_{e}^{-2.17} \quad \frac{N_{e}}{N_{\mu}} &\approx 35.1 \cdot \left(\frac{E_{0}}{A \cdot 1 \text{ PeV}}\right)^{0.15} \end{split}$$

![](_page_10_Figure_4.jpeg)

# KArlsruhe Shower Core and Array DEtector

![](_page_11_Figure_1.jpeg)

### Event reconstruction in the scintillator array electromagnetic component

e/γ-Detectors, Run 1, Event 71089, 96-03-05 22:07:48.956078

![](_page_12_Figure_2.jpeg)

| shower core      | $\Delta r = 2.5 - 5.5 \text{ m}$            |
|------------------|---------------------------------------------|
| shower direction | $\Delta \alpha = 0.5^{\circ} - 1.2^{\circ}$ |
| shower size      | $\Delta N_{e}/N_{e} = 6 - 12 \%$            |

### Two dimensional shower size spectrum Ig $N_e$ vs. Ig $N_{\mu}$

![](_page_13_Figure_1.jpeg)

#### T. Antoni et al., Astropart. Phys. 24 (2005) 1

![](_page_14_Figure_0.jpeg)

estimator for mass A of primary particle

JRH, Mod. Phys. Lett. A 22 (2007) 1533

![](_page_15_Figure_0.jpeg)

# Muon production height - KASCADE muon tracking detector

![](_page_16_Picture_1.jpeg)

### Muon production height – KASCADE muon tracking detector

![](_page_17_Figure_1.jpeg)

### Hadronic interaction models Energy flow in collider experiments

![](_page_18_Figure_1.jpeg)

# KASCADE Hadron Calorimeter

![](_page_19_Picture_1.jpeg)

![](_page_19_Figure_2.jpeg)

#### J. Engler et al., Nucl. Instr. Meth. A 427 (1999) 528

### **Reconstruction of hadrons**

#### **Unaccompanied hadron**

![](_page_20_Figure_2.jpeg)

spatial resolution:  $\sigma_x \sim 10 - 12 \text{ cm}$ 

angular resolution:  $\sigma_{\odot} \sim 1^{\circ} - 3^{\circ}$ 

energy resolution:

$$\frac{\sigma(E)}{E} [\%] \approx \frac{250}{\sqrt{E/\text{GeV}}}$$

### Hadronic shower core

#### $E_0 \sim 6 \text{ PeV}$

Number of reconstructed hadrons  $N_h = 143$ 

![](_page_21_Figure_3.jpeg)

### Hadronic shower core

#### $E_0 \sim 6 \text{ PeV}$

Number of reconstructed hadrons  $N_h = 143$ 

![](_page_22_Figure_3.jpeg)

**Transverse momentum in hadronic interactions** 

![](_page_23_Figure_1.jpeg)

![](_page_23_Figure_2.jpeg)

T. Antoni et al., Phys. Rev. D 71 (2005) 072002

### **KASCADE:** Test of hadronic interaction models

previously

![](_page_24_Figure_2.jpeg)

J. Milke et al., 29th ICRC, Pune (2005)

### **Contemporary models with composition QGSJET 01** N<sub>e</sub>-N<sub>u</sub> analysis

![](_page_25_Figure_1.jpeg)

J. Milke et al., 29<sup>th</sup> ICRC, Pune (2005)

**KASCADE – Test of EPOS 1.6** 

![](_page_26_Figure_1.jpeg)

 $\rightarrow$  energy per hadron too small

# EPOS delivers not enough hadronic energy to the ground

→ EPOS 1.6 is NOT CONSISTENT with KASCADE observations!

W.D. Apel et al., J. Phys. G 36 (2009) 035201

### **KASCADE – Test of EPOS 1.6**

### **Inelastic cross sections**

![](_page_27_Figure_2.jpeg)

W.D. Apel et al., J. Phys. G 36 (2009) 035201

![](_page_28_Figure_0.jpeg)

![](_page_28_Figure_1.jpeg)

### Two dimensional shower size spectrum Ig N<sub>e</sub> vs. Ig N<sub> $\mu$ </sub>

![](_page_29_Figure_1.jpeg)

## **KASCADE: Energy spectra for elemental groups**

![](_page_30_Figure_1.jpeg)

description of interactions in the atmosphere

T. Antoni et al., Astropart. Phys. 24 (2005) 1

# **KASCADE: Energy spectra for elemental groups**

![](_page_31_Figure_1.jpeg)

description of interactions in the atmosphere

T. Antoni et al., Astropart. Phys. 24 (2005) 1

### **KASCADE: Energy spectra for elemental groups**

![](_page_32_Figure_1.jpeg)

# Different zenith angle bins

![](_page_32_Figure_3.jpeg)

### knee in all-particle energy spectrum caused by cut-off of light components

W.D. Apel et al., Astropart. Phys. 31 (2009) 86

### **Muon production height – KASCADE Muon Tracking Detector**

![](_page_33_Figure_1.jpeg)

![](_page_34_Figure_0.jpeg)

![](_page_35_Figure_0.jpeg)

# **Cosmic-ray energy spectrum**

![](_page_36_Figure_1.jpeg)

according to Astropart. Phys. 19 (2003) 193

# **Transition to extragalactic CR component**

![](_page_37_Figure_1.jpeg)

JRH, Adv. Space Res. 41 (2008) 442

### **KASCADE GRANDE** Array

37 detector stations
370 m<sup>2</sup> e/γ:
scintillation counter

700 m

![](_page_38_Picture_2.jpeg)

G. Navarra et al., Nucl Instr & Meth A 518 (2004) 207

700 m

![](_page_39_Figure_0.jpeg)

M. Bertaina (2010)

## **KASCADE-Grande – Lateral distributions**

![](_page_40_Figure_1.jpeg)

J. v. Buren et al., Proc. 29th ICRC, Pune 6 (2005) 301

R. Glasstetter et al., Proc. 29th ICRC, Pune 6 (2005) 293

### **Cross-check between KASCADE and Grande**

![](_page_41_Figure_1.jpeg)

M. Bertaina (2010)

## **Reconstruction of the energy spectrum**

We use three different methods:

- $\cdot N_{ch}$  as observable
- $\cdot N_{\mu}$  as observable
- •Combination of  $N_{ch}$  and  $N_{\mu}$  as observables
- Cross check of reconstruction procedures
- Cross check of systematic uncertainties
- Test sensitivity to composition
- Cross check of validity of hadronic interaction models

If not explicitly mentioned in the following CORSIKA QGSjetII/FLUKA interaction model is used

\*additional method to reconstruct the energy spectrum employs the particle density at 500 m (S500) (see G. Toma's poster on Thursday's morning - Session 4)<sup>11</sup> M. Bertaina (2010)

# **KASCADE-Grande first results**

### lateral distribution of single event muon lateral density

![](_page_43_Figure_2.jpeg)

### charged-particle lateral density

![](_page_43_Figure_4.jpeg)

#### $N_e$ - $N_\mu$ correlation

![](_page_43_Figure_6.jpeg)

### S(500): charged-particle density 500 m from shower axis

![](_page_44_Figure_1.jpeg)

## **Constant Intensity Cut and Muon Data**

### integral muon number spectrum

![](_page_45_Figure_2.jpeg)

#### shower size spectrum

![](_page_45_Figure_4.jpeg)

A. Haungs et al., Nucl. Phys. B (Proc. Suppl.) 2009

### muon attenuation curves

![](_page_45_Figure_7.jpeg)

### **but:** attenuation length

![](_page_45_Figure_9.jpeg)

# Comparing the 3 methods (dl/dE x E<sup>3</sup>)

![](_page_46_Figure_1.jpeg)

M. Bertaina, ECRS (2010)

### Comparison with KASCADE & EAS-TOP

![](_page_47_Figure_1.jpeg)

#### M. Bertaina (2010)

# The all-particle energy spectrum

![](_page_48_Figure_1.jpeg)

M. Bertaina, ECRS (2010)

![](_page_49_Picture_1.jpeg)

# The air shower experiments KASCADE and KASCADE-Grande

- •Behaviour of light cosmic-ray components at knee confirmed
- Knee caused by cut-off of light nuclei
- •Test of hadronic interaction models ongoing Improvement of interaction models in progress
- Analysis of KASCADE-Grande successfully ongoing
  All-particle energy spectra have been reconstructed
- Mass reconstruction in progress
- •New insight to end of galactic component upcoming...

### KASCADE-Grande Collaboration

Universität Siegen Experimentelle Teilchenphysik P. Buchholz, C.Grupen, D.Kickelbick, S.Over

![](_page_50_Figure_2.jpeg)

S. Ostapchenko

IFSI, INAF and University of Torino M. Bertaina, E. Cantoni, A. Chiavassa, F. Di Pierro, P.L. Ghia, C. Morello, G. Navarra<sup>\*</sup>, G. Trinchero

> Universidad Michoacana Morelia, Mexico J.C. Arteaga

http://www-ik.fzk.de/KASCADE-Grande/

#### Institut für Kernphysik & Institut für Experimentelle Kernphysik KIT - Karlsruhe Institute of Technology

W.D.Apel, K.Bekk, J.Blümer, H.Bozdog, F.Cossavella, K.Daumiller, P.Doll, R.Engel, J.Engler, M.Finger, H.J.Gils, A.Haungs, D.Heck, T.Huege, P.G.Isar, D.Kang, H.O.Klages, K.Link, M.Ludwig, H.-J.Mathes, H.J.Mayer, M.Melissas, J.Milke, S.Nehls, J.Oehlschläger, N.Palmieri, T.Pierog, H.Rebel, M.Roth, H.Schieler, F.Schröder, H.Ulrich, A.Weindl, J.Wochele, M.Wommer

![](_page_50_Figure_9.jpeg)

\*deceased